Antagonism of ATP responses at P2X receptor subtypes by the pH indicator dye, Phenol red.
نویسندگان
چکیده
1 Many types of culture media contain a pH-sensitive dye. One commonly occurring dye, Phenol red sodium (Na(+)) salt, was tested for blocking activity at rat P2X(1-4) receptors (P2X(1-4)Rs) expressed in Xenopus oocytes. 2 Phenol red Na(+)-salt antagonised adenosine 5'-triphosphate (ATP) responses at P2X(1)R (IC(50), 3 microM) and, at higher concentrations, also blocked P2X(2)R and P2X(3)R. Phenol red Na(+)-salt, purified of lipophilic contaminants, blocked P2X(1)R and P2X(3)R by acting as an insurmountable antagonist. 3 Two lipophilic extracts of Phenol red antagonised ATP responses at P2XRs. Extract A was a potent antagonist at P2X(1)R (IC(50), 1.4 microM), whereas extract B was a potent antagonist at P2X(3)R (IC(50), 4.1 microM). A bisphenolic compound (RS151030) found in these extracts was a potent antagonist at P2X(1)R (IC(50), 0.3 microM) and at P2X(3)R (IC(50), 2.4 microM). 4 Phenolphthalein base was a potent irreversible antagonist at P2X(1)R (IC(50), 1 microM), whereas Phenolphthalein K(+)-salt was 25-fold less potent here. 5 Phenolphthalein base was a reversible antagonist of ATP responses at rat P2X(4)R (IC(50), 26 microM), whereas Phenolphthalein K(+)-salt was inactive. 6 Dimethyl sulphoxide (DMSO), used to dissolve lipophilic extracts, showed pharmacological activity by itself at rat P2X(1)R and P2X(4)R. 7 Thus, Phenol red and related compounds are antagonists at rat P2X(1)R, but are also active at other rat P2XRs. Phenolphthalein base is a newly identified, low potency antagonist of ATP responses at P2X(4)R. Culture media containing these red dyes should be used cautiously in future pharmacological studies of P2XRs. Also, wherever possible, the solvent DMSO should be used with caution.
منابع مشابه
Absorbance signals from resting frog skeletal muscle fibers injected with the pH indicator dye, phenol red
Singly dissected twitch fibers from frog muscle were studied on an optical bench apparatus after micro-injection with the pH indicator dye, phenol red. Dye-related absorbances in myoplasm, denoted by A0(lambda) and A90(lambda), were estimated as a function of wavelength lambda (450 nm less than or equal to lambda less than or equal to 640 nm) with light polarized parallel (0 degrees) and perpen...
متن کاملCoexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes.
Transcripts for P2X(2) and P2X(6) subunits are present in rat CNS and frequently colocalize in the same brainstem nuclei. When rat P2X(2) (rP2X(2)) and rat P2X(6) (rP2X(6)) receptors were expressed individually in Xenopus oocytes and studied under voltage-clamp conditions, only homomeric rP2X(2) receptors were fully functional and gave rise to large inward currents (2-3 microA) to extracellular...
متن کاملRenal handling of phenol red. III. Bidirectional transport.
1. The renal excretion of phenol red and other phenolsulphophthalein dyes (bromophenol blue and bromothymol blue) was studied in clearance experiments on anaesthetized rabbits. 2. Net tubular excretion of phenol red reached a maximal value of 8 mumole/min at a plasma concentration of ultrafiltrable dye of about 0.1 mM and was decreased at higher plasma concentrations. Decreases in net tubular e...
متن کاملMultiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages.
We investigated P2 receptor expression and function in macrophages from mouse, and in the J774 cell line, and revealed a larger spectrum of P2 receptor subtypes than previously recognised. The nucleotides adenosine triphosphate (ATP), adenosine diphosphate, uridine triphosphate and uridine diphosphate evoked an increase in intracellular calcium and the activation of a potassium current. The sen...
متن کاملCompetitive antagonism of recombinant P2X(2/3) receptors by 2', 3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP).
TNP-ATP has become widely recognized as a potent and selective P2X receptor antagonist, and is currently being used to discriminate between subtypes of P2X receptors in a variety of tissues. We have investigated the ability of TNP-ATP to inhibit alpha,beta-methylene ATP (alpha,beta-meATP)-evoked responses in 1321N1 human astrocytoma cells expressing recombinant rat or human P2X(2/3) receptors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- British journal of pharmacology
دوره 145 3 شماره
صفحات -
تاریخ انتشار 2005